Showing posts with label advise. Show all posts
Showing posts with label advise. Show all posts

Monday, May 13, 2013

GUIDES and TUTORIALS

Sorry about the delay but...

After completing my latest mod, I promised a guide.  Due to personal reasons, I have not had a chance to work on this.  As time goes by and it is less fresh in my mind, it becomes somewhat more difficult to compile.  While all the information to do this mod is within this blog, it is not very well organized.  The Monitor to DVI instructions are contained within the 20" Sandy Bridge Guide.  While I talk about the native power source in this tutorial, I use a PICO power supply in this actual mod.  The native PSU is really discussed in a different post.  Likewise, wiring up the new NUC board is in a different post altogether.

I had initially constructed this site to be a "Tech Journal/Diary" where the most recent updates would be chronologically first and older entries could contain outdated or incorrect information.  As I became more involved in the iMac G4 project, this site became more of a guide/tutorial site.  While this isn't a bad thing, its just not exactly how it was designed to be.

As I've been putting together the tutorial for the 20" Ivy Bridge NUC Mod (in the form of audio over pictures), I've realized that this may be the opportunity for a "redesign".  I would like to keep this site as my tech journal site.  Even the failed mods and the process behind them is something I would like to "preserve".  I have secured "imacmods.com" and I am hoping to eventually link between these two sites for a more cohesive and straight forward experience.  Someone wanting to know how to connect the native PSU can click on it and either go to a written tutorial, video guide, or original dremel junkie post.

It is certainly not lost on me how confusing it is to google "iMac G4 Update" and think you've found the answer only to find several posts detailing somewhat related (but not the same mod).  Also, from my end, I have step by step photographed, documented, and wired up two different 17" necks (one on video) and a 20", and am now going to repeat it again for the 20".  This will allow me to have a "modular" approach where 'for instance' STEP B: Conversion to DVI remains the same regardless of which computer you use in the base.

I would greatly appreciate any advice from those more skilled than me at web site creation.  I would like it to be simple and easy to follow, but am a novice at this.  Please let me know if you have any suggestions.

The 20" NUC Tutorial

I want to assure you that this will not interfere with the 20" NUC tutorial.  The biggest hold up has been the fact that I am not 100% happy with the amount of pictures and detail that I captured.  My goal was to complete the mod and I was not as thorough with photographing and documenting the steps along the way.  Although I do not have a problem opening up my mod.  There is no doubt that I will have to do a decent amount of disassembly to get the pictures I would like.  If I am going to disassemble my mod, I would love to upgrade it in the process if possible.  Luckily, it does appear upgrades are not far off courtesy of Intel and Gigabyte:

From Gigabyte - The Brix:

Courtesy of Computerbase.de
Courtesy of Computerbase.de
This NUC based system is smaller, lighter, has more I/O options and will have i5 and i7 options.  While initially Ivy Bridge based, Haswell is likely not far behind.

And Intel:


Rend Lake will be i5 and USB 3.0 capable based of Ivy Bridge Architecture.

In retrospect the use of Thunderbolt was a waste on the initial NUC.  Initially I thought it would be "future proofing", but its been months later and the only intriguing peripheral is Belkin's (finally being released) $300 Thunderbolt dock.  Of course, its the USB 3.0 that makes this dock interesting.

Thus, this NUC should be far more versatile (at least I hope).

I am unsure of the variation in the "Horse Canyon" Core i5, it doesn't appear to use a Haswell Chip, though I can not be sure.



"Skull Canyon" is the Core i7 Variant, and the one for which I am most excited.

Of course, updates are always going to happen, and while these are only incremental upgrades, I have been looking for an opportunity to add USB 3.0 in particular (and get rid of the thunderbolt).  As these seem like they are "around the corner", I am asking for patience in terms of the guide.  Replacing the board is not difficult, but it would make more sense to only disassemble and reassemble this mod once.

So please stay tuned and hopefully the tutorial will be done shortly, with an even more powerful NUC serving as the computer.

EDID and HDCP

Some of you may have noticed an"incompatibility" with certain sources.  Sometimes this is due to playing digital protected content "HDCP" or even using certain motherboards.  For myself, the EPI-QS77 and I am told the Raspberry Pi as well, seem to cause incompatibility issues.  In some cases, changing from DVI to HDMI and back can remedy the problem, other times, artifacts persist in the monitor.  My guess is that some boards may have an incompatibility with the "EDID", the identifier of this LCD.  While there is no direct way around this, there is an "indirect way".

The White Polycarbonite Family
As I have mentioned before, prior to figuring out direct wiring of the existing LCD, I had found a work around.  This "work around" is used in the iMac G4 (pictured above) and although its just serving as a monitor (with a modded iMac G5), I have now been using it daily for over 2 years without any problems whatsoever.  This work around keeps the native inverter and can keep the LCD or use an LCD from an aluminum Apple Cinema Display or iMac G5.  The most important thing is that this uses the controller board from an apple cinema display.  While this does involve opening and rewiring the neck, it does give the LCD a true EDID and HDCP compatibility.  There are certain other advantages as well, but it is more technically challenging and will require some parts from a cinema display.

I mention this only to gauge interest.  Are there people who have experienced this problem? Are people interested in this particular method?

Thank you all again for your patience and thank you for taking the time to read this.

Monday, December 17, 2012

A Great Little Board

A Change of Heart

When I first ordered the Intel NUC, my purpose was to see if this form factor had promise for the future.  I also figured that this small board would be useful to test projects and perhaps even wind up as a little media center somewhere.  In truth, I did not expect to seriously consider this board for the iMac G4 project. After working with this board for a while, I have to admit, its pretty fantastic.  For one, the size is remarkable, especially when it is removed from the case. This makes even ECX boards look big.  Secondly, its dead simple, it uses EFI bios, requires only RAM, a half height WiFi mSATA, and a full size mSATA SSD.  The mSATA in particular makes the system even smaller.  There is no need for even a 2.5" drive and nearly all wires are eliminated in this fashion.
 
As opposed to the other boards, this board only contains a Core i3 processor and there is a paucity of USB ports (only 3), mSATAs (one half height, one full height), an HDMI connector, and either a Ethernet + extra HDMI or Thunderbolt. (Depending on which of the 2 models you choose).


A Look Inside
 Despite these negatives there are other advantages this board has.  The availability of 2 RAM slots for a max of 16GB.  Thunderbolt while (at this point) is expensive and has few compatible devices does leave open impressive possibilities including hubs, a second display, and even a pci express graphics card.  The size also leaves most of the base available as it fits between the native PSU right under the fan and allows you to keep the optical drive (though a USB connection would be needed as there are no regular SATA hookups).

The Software/A Mountain Lion Hackintosh

The only method I use is tonymac's retail Mountain Lion Unibeast/Multibeast install method.  While the other boards took a very long time to get right, this could not have been easier.  I did know in advance to change the graphics to 128MB and of course AHCI instead of IDE (for the SATA controller).  Except for these small changes, there is almost no way to go wrong.  I used the Easy Beast Install with the Mac Mini 6,1 definition.  Now the reason for this is that there isn't much to the board, while other motherboards are loaded with other chipsets for gigabit Ethernet, SATA controllers, Touchscreen controllers, other I/O controllers, and business related QM chipset features, this board is really only about the basics.  But, with hackintoshes, less is more.  Having to clear your CMOS after you mistakenly enable some feature is no fun.  Neither is having to reinstall the OS because you decide to try to get native audio to work one last try.  This makes it very time consuming when it comes time to upgrade your OS.
 
One note,  I have read HDMI audio does require a work around, but this obviously does not apply to this mod.  Without any other audio cable out, a USB audio card will be needed.  But, so far airplay seems to work flawlessly, and can make for a wireless alternative.  So, in short, if a modestly powerful Ivy Bridge Hackintosh is your goal for this mod, I would recommend these boards above the others.  Being the easiest to find and the most affordable also doesn't hurt.
 
About This Mac
 Some Technical Issues to Solve:

1) Ports: 3 USBs is simply not enough and for basic function more is needed.  Thunderbolt hubs are absurdly overpriced right now, but either a Thunderbolt to SATA and/or USB or a regular USB Hub will be needed.  One USB is needed for the 5V "backlight power on" signal.

2) Fan:  there is a directional fan, but due to the faraday cage, I would still like to add the case fan in some manner.  This may involve replacing the existing fan and situating it directly underneath the iMac's case fan, splicing the fan wire to power it.  Or, running both, using the PSU to drive the fan (though a manual control knob may then make sense).

3) Power switch: This is hard soldered to the board.  A bypass will need to be wired up and I am fairly sure this can be done in an easy to reverse way.

4) Audio: A USB audio solution is needed.  This is not a difficult thing to find, but I am considering an airplay or Bluetooth based solution.

5) Bluetooth: I have been unable to find a Wifi/Bluetooth combo half height card that will work so far, so I will have to go with a Bluetooth dongle.

6) The Optical Drive: Using this solution means using USB to SATA to connect to a drive, but it will still need to be powered.  May require 12V to 5V downconverter.

7) Power: Worst case Scenario would involve connecting AC to the small power brick that comes with the NUC, but this seems like a waste.  Unfortunately as this board needs 19V, either an upconverter or downconverter will be needed to go from either 12V or 24V.


Concluding Thoughts

Although I'm not certain, I am actually leaning towards this board,  If this was an i5, putting it on par with my previous system (with more RAM and better graphics) this would be a slamdunk.  Each EPIC or ECX board requires different connectors, drivers etc. As Intel is likely to continually upgrade this form factor, getting this right may "future proof" future designs.  I am likely to build this out and see what the final project looks like and how it functions.
 
I will certainly post detailed instructions and may do a video guide if there is enough interest.  Thanks again for reading!
 


Wednesday, December 5, 2012

Ivy Bridge Upgrades via Small Form Factor Boards

The Current SFF (Small Form Factor) Market and Trends:


As I mentioned in a previous post, I had suspended work on my iMac G4 20" upgrade until Small Form Factor Ivy Bridge Boards become available.  I have become somewhat of a small form factor enthusiast as a result of these projects and am excited by the accessibility of what previously were industrial only form factors as well as new specifically targeted enthusiast boards such as the Raspberry Pi, Android Compatible ARM boards, and Intel's NUC line.  I am pleased to report that I am in possession of one SFF Ivy Bridge Board and have another two ordered and en route.

As the size and power consumption of powerful processors and boards continue to decrease these mods will only continue to get easier, more diverse, more powerful, and less expensive.  The one "nuisance" of the recent computing era (at least for these projects) has been an unbalanced focus on shrinking things primarily by thickness.  The ultrabook and tablet markets have caused a "flattening" of components without as significant a change in the other dimensions.  Take the Mac Mini for example, the overall volume decreased as a result of a dramatic reduction in height, but this was in spite of an actual increase in the footprint (length x width).
Old on top, New on bottom
Courtesy of CNET

SFF Computing and iMac G4 Mods

A Tight Squeeze
As far as the iMac G4 mod (and many other mods/projects) are concerned this can actually complicate things.  For those not familiar with my approach to the iMac G4 is Mobos smaller = better.

To sum up, the original iMac was convection cooled were physical contact via heat pipes carried heat to the top of the dome where a fan blew out. Thus the very poorly ventilated case was designed to be cooled with room temperature air coming in through slits at the bottom of the dome and hot air being blown out through the top of the dome.  Any air cooled motherboard/cpu (by far the hottest and most important component) benefits from being as close to the top as possible because it decreases the distance the heated air has to travel before it reaches the case fan and ventilation and decreases the heat of the overall dome and the heat the components above the mono/cpu are subjected to.  Also, probably most important, placement at the bottom of the dome will unavoidably result in poor, obstructed ventilation.  Any other component, especially wiring, will have to go above the CPU and mobo.  As the dome tapers to the fan at its apex and the faraday (metal inside) cage makes most of the periphery of the dome difficult to use for components.  If all you want is a motherboard and cpu, it can be done with a large heatsink to the top of the dome and a low thermal output processor, but no other components could be added and wiring would still be difficult.

Using a small form factor board allowed me to use a Core i processor at the top of the dome and allowed the rest of the dome to be used for a pico PSU, a full 5.25" optical drive, and a 2.5" solid state HDD.  As the widest point base still barely fits a mini itx (and port blocking is a problem), so options have been limited.  I am fairly certain the the mac mini will eventually shrink in all directions and that it will be suitable for a G4 mod.  In addition, I am hopeful, new form factors of computing will emerge and we will see other alternatives to the ultrathin rectangles that dominate today.  But for now, this is what I am working with:

Current Ivy Bridge SFF Options:

I will be reviewing each of the options based on features, cost to performance ratio, size and workability with the iMac G4 mod, and "hackintoshability".  Therefore, expect this post to be a work in progress with periodic updates.  Again, I am focusing on high performance x86 architecture, but this is by no means a slight to alternatives such as low-power Nano/Pico x86 boards or increasingly popular ARM devices, this is simply a matter of personal preference.

Choice 0: Quanmaxx KEEX-6100 ECX board

KEEX-6100 with large heatsink

I am listing this as "Choice 0" because it is based on Sandy Bridge Architecture, but it has been overwhelming successful particularly as a hackintosh running OSX Lion.  It is available from Quanmaxx's USA store and is even available in a wide temperature variant.  Here it is seen with an extra large heatsink I adapted when I upgraded this to a Core-i7 Quad.

Choice 1: Avalue's EPI-QM-77

Front View
Though this EPIC board is slightly larger, this board is"thinner" as a result of more room for ports on the edges, thus no need for the stacked ports seen on the ECX boards.  It remains a small form factor that easily fits the iMac G4 chassis.  It is available from Global American and I have it in my possession and just started working with it.

Back View
In terms of size, here are pictures of this board in the middle with a Core i Mini-itx on its left and the Quanmaxx (with regular heatsink) on the right.  The first picture shows overall dimensions,while the second shows thickness/height.

From Left to Right: Mini itx, EPIC, ECX

From Left to Right: Mini itx, EPIC, ECX

Choice 2: Aaeon's GENE-HM76 ECX

Also available as a more expensive QM77 (has extra corporate features, most apple mobile Ivy bridge processors are HM77 (very similar to HM76).
Courtesy of Aaeon
This is a true ECX board and identical in size to the Quanmaxx ECX.  I have purchased this board from NextWarehouse and it is en route.

Choice 3: Intel NUC: DC321BY QS77

Courtesy of Newegg

Although it only contains a Core i3, this is the one I am most excited about.  This is because of reasons outlined in my previous post.  This is the smallest Core i board that intel believes is possible.  This board is targeted at the mainstream and this model includes thunderbolt connectivity.  This comes with a "chassis" and is likely to see upgraded models at regular intervals in the future.  It is widely available from vendors including Newegg.  It has been ordered and I will continue to update as I learn more.





Monday, February 20, 2012

iMac G4 Mod Advice

I hope this doesn't come across as preachy, but I just want to give some advice to those of you new to modding the iMac G4.  I have disassembled and reassembled this computer so many times I could probably do it blindfolded.  There are a few aspects of modding this computer that have led to a lot of frustration for me, a few pointers, hopefully, will help some of you.

1) If your goal is to connect your iMac G4's LCD to modern hardware.  Use the Native LCD with the "TMDS to DVI Method".  Changing all the wires to some other method of connection such as LVDS is very time consuming, less stable, and more expensive.  There is no reason not to use the native TMDS wires that go from the native LCD through the neck.  Apple has already done the work for you! Plus, TMDS is a digital signal that is more stable over distance than LVDS and TTL.  Apple has put the controller inside the LCD itself, with other LCDs, you would have to add one.  I have done this both ways, replacing the screen and replacing/soldering the wires takes hours and likely days.  By using the TMDS to DVI Method with the DVI Connector below, you could get a signal within 30 minutes that is superior in every way.  Which brings me to.....
DVI Connector


2) USE THIS DVI CONNECTOR!!!  (MOLEX PN 74320-4004 - though other variations which work just as well exist).  It is very cheap and makes this mod so much easier.  I can not emphasize this enough. I know a male HDMI may be more convenient (or even a male DVI), but for the price of an adapter you will save yourself a lot of frustration.  Sure you could cut off an HDMI cable and solder it to the iMac G4's pins, but this is a much harder task than you may think.  The TMDS channel wires in the Black LCD cable are as thin as a hair and this is no exaggeration.  If you manage to spare the pins at the end of the wires during soldering this can be done.  But, as the pins are soldered to the ends of the wires themselves, they have an annoying habit of falling off when heat from a soldering iron is applied.  Also, if you make a mistake while soldering there is no going back.  As this is a digital signal, one broken connection can mean no signal at all.  What's more is that even if you do things perfectly, you can still have signal problems.  One mod that I made I had to cut and reconnect again (so I lost all the pins).  Despite a perfect connection, the image was plagued by artifact.  Another time, I had red/green pixels "dancing around" when viewing certain colors.  I ended up having to replace the entire Black LCD cable (with the TMDS signaling cable from an Apple Cinema Display which has thicker wires) to solve the problem.  TMDS uses minute differences between the positive and negative wires (and their shield wire) to communicate.  Altered resistance in the form of a little too much solder or too much wire wrapped around can result in these types of artifacts even if you are extremely good with soldering.  This DVI connector makes this almost plug and play.  The pins fit perfectly,  you don't need to solder at all.  I am not exaggerating when I say that this method saved me 10+ hours of intensive work on my recent mod.  Besides having to put a piece or two of electrical tape over some pins to prevent cross-talk, my image has been pristine every time I have used this connector.  Do not repeat the same mistakes that I have made.

iMac G4 Neck with Cinema Display Wires
3) Although no longer necessary with the TMDS to DVI Mod, if you want to add or change some wires, do not be scared to open the neck.  Its not hard, does not require special tools, and is not really dangerous.  I have written on this blog about the exploding neck because I had read about it myself.  I've had an open neck fall off the table, I've left necks open for weeks at a time, and have never had the spring fly off.  I wouldn't throw an open neck as hard of you can against the wall, but you do not have to handle it like its plutonium.  Just keep in mind that  if you do knock the spring off its moorings it takes a lot of work to pry it back up into position.

4) If you need to add wires to the neck, do not put more/thicker wires into the neck than it can hold.  Just because you can get it through the holes does not make it a good idea.  When you overcrowd the neck, you'll start to hear grinding and some wires will wear down as they are pushed into the hinges of the neck.  The iMac G4 has 4 wires that go through the native neck.  When you replace wires, take out what you're not using and aim to have about the same "volume of wires" as the native neck comes with.

5) Get rid of the Torx-6 screws.  These are the most troublesome screws I have ever worked with.  On the bottom of the 17" and 20" iMac G4's monitor housing you will find 3 screws that require a Torx-6  screwdriver to open.  These are the screws that keep the monitor housing closed.  I have never seen screws that strip easier despite using the appropriate tool.  6 points on a tiny screw is very close to a circle and once you start stripping it - its already too late.  Chances are good that you may have to open up the monitor housing again at some point for upgrades, repairs etc.  Act preemptively and replace these with small phillips screws - it will save problems later.

5) Want an All-In-One? Consider an 3.5" ECX or other small form factor board.  Although mini-itx or a mac mini motherboard are the most popular choices neither of these is ideal from a size/heat perspective.  ECX's can fit at the top of the dome in place of the native HDD where heat won't be as big a problem as it would with a mini itx at the bottom of the dome.  They don't require an atx power supply and come with a variety of additional options including PCI-E mini or x4, Compact Flash etc.  Processors range from Atom to AMD Fusion to Sandy Bridge Core i processors.  This allows you to keep the full 5.25" drive if you want and allows room at the bottom of the dome for ports at the back.  Although not nearly as expandable as a mini-itx mobo, with such limited space in the dome, this isn't likely to matter.

6) Do not sacrifice stability for power.  The mods I've posted usually don't include the mods which failed.  Most of these initially worked but failed because I tried to force things.  If you have to use all your strength to push your mod closed to screw it in, it will not last.  If you cram things in between the motherboard and the air holes, your board will overheat.  Keep expectations in check.  If you have a 17" monitor running at 1440x900 you don't need SLI or Crossfire.  Having it turn on and having a critical problem like this is worse than it not working at all.  If it does not turn on, you can start troubleshooting what went wrong.  These problems (like my 20" TMDS to LVDS with too many wires through the neck) usually require a complete redesign and many of the parts have to be repurposed or replaced altogether.

Hope this helps.